
理解神经网络的训练过程
许志钦

上海交通大学

2021.4.17
机器学习联合研讨计划



Start from traditional generalization gap

Generalization Gap

Large complexity → Large generalization gap

Runge phenomenon



A generalization puzzle arises in deep learning

Zhang et al., 201660000 32x32 colour images in 10 classes

Puzzle: generalize well even # of para >> # of training data



Generalization puzzle in 1d experiments

Lei Wu et al., 2017# of parameters: ~ 1600*Layer number>>5

Flat output, no large oscillation



Why overparameterized NNs often generalize well?

Capability

Generalize well



What DNN cannot do

Abbe and Sandon, 2018

Parity function:

𝑓 Ԧ𝑥 =ෑ

𝑗=1

𝑛

𝑥𝑗

Ԧ𝑥 ∈ −1,1 𝑛

Even ‘-1’ → 1

Odd  ‘-1’ → -1

No generalization ability



Depth effect: generalization and speed

Deep Residual Learning for Image Recognition, He et al., 2016



Some problems

Overparameterized but often generalize well

Bad generalization on some problems



1989
Single hidden layer can fit any function



Fitting is not enough!

How to study?



扔石头的实验



研究过程来理解结论
Training behavior



E.g., Generalization error analysis

No free lunch theorem: I can find a dataset that your method generalizes badly.

Data features

Data 
features

Algorithm 
features

Consistent???



Increasing complexity
𝑥 is critical sample if there exists ො𝑥,
close but not same class.

Arpit et al., 2017, ICML



Increasing complexity
Performance correlation

Nakkiran et al., 2019



Why such studies are difficult for understanding DNN?

critical sample is difficult to be analyzed

Performance correlation use black box to characterize black box



Philosophy? 

A: I am looking for my quarter I dropped.
B: Did you drop it here?
A: No, I dropped it two blocks down the street.
B: Then why are you looking for it here?
A: Because the light is better here.



Philosophy: from simple to complex

A: I am looking for my quarter I dropped.
B: Did you drop it here?
A: No, I dropped it two blocks down the street.
B: Then why are you looking for it here?
A: Because I need to get familiar with the road structure first.

“In the tradition of good old 
applied mathematics, we 
will not only give attention 
to rigorous mathematical 
results, but also the insight 
we have gained from careful 
numerical experiments as 
well as the analysis of 
simplified models”

E et al., Towards a Mathematical 
Understanding of Neural Network-
Based Machine Learning: What We 
Know and What We Don’t. CSIAM 
Trans. Appl. Math, 2020





Training process of 1d example in spatial domain

Red:

target function

Blue:

DNN fitting

From landscape to detail

1807.01251

https://arxiv.org/abs/1807.01251


Features in spatial domain

Flatness and oscillation Landscape and detail

1807.01251

https://arxiv.org/abs/1807.01251


Training process of 1d example in Fourier domain

Red:

target function

Blue:

DNN fitting

Frequency
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Frequency principle: From low frequency to high frequency

1807.01251

https://arxiv.org/abs/1807.01251


A Simple Theory Understanding: 
one hidden layer, infinite width



Linear approximation for wide NN

Lee et al., 2019CIFAR 10, CNN

𝑑𝜃(𝑡)

𝑑𝑡
= −𝛻𝜃ℎ 𝑋, 𝜃0

𝑇 ℎ 𝑋, 𝜃 𝑡 − 𝑌

ℎ 𝑥, 𝜃(𝑡) = ℎ 𝑥, 𝜃0 + 𝛻𝜃ℎ(𝑥, 𝜃0) 𝜃 𝑡 − 𝜃0 for any 𝑡 > 0

𝑋: 𝑥𝑖 𝑖=1
𝑛 𝑌: 𝑦𝑖 𝑖=1

𝑛

𝐿 𝜃 = 1
2 ℎ 𝑋, 𝜃 − 𝑌 2

2

Jacot et al., 2018



Linear F-Principle dynamics

𝑑𝜃(𝑡)

𝑑𝑡
= −𝛻𝜃ℎ 𝑋, 𝜃0

𝑇 ℎ 𝑋, 𝜃 𝑡 − 𝑌

𝜕𝑡 ℎ 𝜉, 𝑡 = 𝐶𝐸𝑎,𝑟
𝑟3

𝜉𝑑+3
+
4𝜋2𝑎2𝑟2

𝜉𝑑+1
𝑓𝑝 𝜉, 𝑡 − ℎ𝑝 𝜉, 𝑡

ℎ ⋅, 𝜃 =
1

𝑚


𝑖=1

𝑚

𝑎𝑖𝜎(𝑤𝑖𝑥 + 𝑏𝑖)

𝑓: target function; ⋅ 𝑝 = (⋅)𝑝, where 𝑝 𝑥 =
1

𝑛
σ𝑖=1
𝑛 𝛿(𝑥 − 𝑥𝑖); 

Ƹ⋅: Fourier transform; 𝜉: frequency

𝑚 sufficiently large, 𝑟 = | 𝑤 |

𝜕𝑡 ො𝑢 𝜉, 𝑡 = −
𝑟3

𝜉4
+
4𝜋2 𝑟2𝑎2

𝜉2
ෞ𝑢𝑝 𝜉, 𝑡

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) − 𝑓(𝑥)

For simplicity, d=1

LMXZ (1905.10264, 2010.08153)



𝜕𝑡 ℎ 𝜉, 𝑡 = −
𝑟3

𝜉4
+
4𝜋2 𝑟2𝑎2

𝜉2
ℎ𝑝 𝜉, 𝑡 − 𝑓𝑝 𝜉, 𝑡

Preference induced by LFP dynamics

min
ℎ∈𝐹𝛾


𝑟3

𝜉4
+

4𝜋2 𝑟2𝑎2

𝜉2

−1
ℎ 𝜉

2
d𝜉

s.t. ℎ 𝑥𝑖 = 𝑦𝑖 for 𝑖 = 1,⋯ , 𝑛

low frequency 

preference

Case 1: 𝜉−4 dominant

• min 𝜉4 ℎ 𝜉
2
d𝜉~min ℎ′′(𝑥) 2 d𝜉 → cubic spline

Case 2: 𝜉−2 dominant 

• min 𝜉2 ℎ 𝜉
2
d𝜉~min ℎ′(𝑥) 2 d𝜉 → linear spline

LMXZ (1905.10264, 2010.08153)



Limit of the frequency bias

WLMXZ, 2012.03238





Effect of early stopping

1807.01251

https://arxiv.org/abs/1807.01251


Generalization difference

For Ԧ𝑥 ∈ −1,1 𝑛

𝒇 𝒙 = ς𝒋=𝟏
𝒏 𝒙𝒋, 

Even #‘-1’ → 1; 

Odd  #‘-1’ → -1.

Test accuracy: 96.3%>>10% Test accuracy: 72% %>>10% Test accuracy: ~50%, random guess

F-Principe: DNN prefers low frequencies

1901.06523

https://arxiv.org/abs/1901.06523


Frequency Principle

Red: FFT of target function

Blue: FFT of DNN fitting

Each frame is one training step

Frequency
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Xu, Zhang, Xiao, ICONIP, 2019
Xu, Zhang, Luo, Xiao, Ma, CiCP, 2019
Rahaman et al., ICML, 2019

Beginning Theory: regularity of 
activation function

General theory:
Luo, Ma, Xu, Zhang, 2019
E, Ma, Wu. Science China Mathematics, 2020
Wide two-layer ReLU network:
Zhang, Xu, Luo, Ma, 2019
Basri et al., NeurIPS, 2019
Cao, Fang, Wu, Zhou, Gu. 2019
Bordelon, Canatar, Pehlevan, ICML, 2020.  
Zhang, Xu, Luo, Ma, 2020

Algorithms: Fast capture high-frequency

Cai., Li, Liu, PhaseDNN, SIAM J. Scientific Computing, 2019
Liu, Cai, Xu, MscaleDNN. CiCP, 2020. 
Jagtap, & Karniadakis, Adaptive activation, J. Comput. Phys, 2020
Wang et al., Inverse problems, Scientific reports, 2018
Biland et al., Frequency-aware reconstruction of fluid. 2019.
Dziedzic et al., Band-limited Training for CNN, ICML, 2020

Understanding

Wang et al., High frequency helps explain the generalization of CNN, CVPR, 2020
You et al., Drawing Early-Bird Tickets, ICLR, 2020
Chakrabarty & Maji, The Spectral Bias of the Deep Image Prior, NeurIPS, 2019
Jin, Lu, Tang, Karniadakis, Quantifying the generalization, Neural Networks, 2019
Stamatescu, McDonnell, Diagnosing CNN, DICTA, 2018
Rabinowitz, Meta-learners’ learning dynamics are unlike learners, 2019
Zhang, Wu, Rethink Generalization, Memorization and the Spectral Bias of DNNs, 2020
Ma, Wu, E, The slow deterioration of the generalization error, MSML, 2020
Xu, Zhou, Deep frequency principle, 2020









Suffer from high-frequency curse



Learning Results

Consider a control experiment:

𝒎: Neuron number in DNN= Basis number in FEM

𝒎 > 𝒏 (𝒏: grid points)

−∆𝒖(𝒙) = 𝒇(𝒙), 𝒇 𝒙 is only given in finite points (NOTE: not common)

FEM case DNN case



Learning Results: FEM as 𝒎 → ∞

Wang, Xu, Zhang, Zhang, 2020, 2002.07989



Learning Results: FEM as 𝒎 → ∞ for d=2

Wang, Xu, Zhang, Zhang, 2020, 2002.07989



Learning Results: FEM as 𝒎 → ∞ for d=2

Wang, Xu, Zhang, Zhang, 2020, 2002.07989



Learning Results: DNN as 𝒎 → ∞ for d=2

Wang, Xu, Zhang, Zhang, 2020, 2002.07989



MscaleDNN: A multi-scale DNN for high-D and frequency PDEs

• Use radial scaling in k-space to convert high frequency learning to low frequency 

learning, applicable to high-D problem

• Use compact support activation function (i.e. scaling and wavelet functions in 

wavelet theory)

2007.11207



Radial scaling in k-space

• Consider a band-limited function in R^d

Rings in k-space: Red: low frequency

Blue: a high frequency ring A_i

2007.11207



MscaleDNN structures

Giving a MscaleDNN

2007.11207



Compact supported activation function

In order to produce scale separation and identification capability of the MscaleDNN, we take the hint from 
the theory of compact mother scaling function in the wavelet theory

2007.11207



Compact supported activation function

In order to produce scale separation and identification capability of the MscaleDNN, we take the hint from 
the theory of compact mother scaling function in the wavelet theory

2007.11207



Compact supported activation function

In order to produce scale separation and identification capability of the MscaleDNN, we take the hint from 
the theory of compact mother scaling function in the wavelet theory

2007.11207



Two dim case: not fixed frequency

2007.11207



Two dim case: complex domain

2007.11207



High-dim case

2009.14597



High-dim case

2009.14597





Data: 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛

𝐿 𝜽 = σ𝑖=1
𝑛 ℎ𝜽 𝑥𝑖 − 𝑦𝑖

2

Dynamics (regression)

ሶ𝜽 = −∇𝜽𝐿 𝜽

Global 
Minima

Parameter Space

ℎ 𝑥; 𝜽 = ℎ 𝐻

ℎ[𝑗] = 𝜎 𝑊 𝑗 ℎ 𝑗−1 + 𝑏 𝑗

𝜽: 𝑊 𝑗 , 𝑏 𝑗
𝑗=1,⋯,𝐻

Deep Neural Network

Example: Two-layer NN

ℎ𝜽 𝑥 =
𝑖=1

𝑚1

𝑤𝑖
2
𝜎(𝑤𝑖

1
𝑥 + 𝑏𝑖

[1]
)



(𝑚 − 𝑛)-d 
submanifold

Loss + L1/L2/…

loss + initialization + dynamics

Conventional optimization

Deep learning

Solution is determined by

ℝ𝑚

Yaim Cooper, 2018



Picture of deep learning with frequency principle

Parameter space

Global minima

Low frequency 
interpolations

loss  
initialization  
dynamics



Impact of initialization on generalization 
via training dynamics

T Luo, ZQJ Xu, Z Ma, Y Zhang, Phase diagram for two-layer ReLU neural networks at infinite-width limit, JMLR, 2020



T Luo, ZQJ Xu, Z Ma, Y Zhang, Phase diagram for two-layer ReLU neural networks at infinite-width limit, 2020

Motivation



Setup

• Two layer ReLU network at infinite-width limit

• Normalized gradient flow

• Scaling parameters and infinite-width limit

𝑥 = 𝑥𝑇 , 1 𝑇

𝑤𝑘 = 𝑤𝑘
𝑇 , 𝑏𝑘

𝑇



Phase diagram

• Phase diagram for matter
distinctive states of matter <-> environment
(phase transition happens at infinite size limit)
solid, liquid, gas <-> pressure, temperature

• Phase diagram for two-layer ReLU NN
distinctive training dynamics <-> initialization
(𝑚 → ∞)
? <->? 

Identification of coordinates of phase diagram (in analogy to pressure, temperature)
1. Effectively independent
2. Dynamical similarity
3. Differentiation capability



Initialization methods with their scaling parameters





Typical cases across the phase diagram
Linear regime critical regime condensed regime

𝛾′ = 0



Regime identification

• Linear regime (with ASI)

• Relative distance

As 𝑚 → ∞,

• Linear regime: 

• Condensed regime:

• Critical regime:



Regime identification through experiments

𝛾′ = 0



Regime identification through experiments

Synthetic data MNIST data



Regime separation -- theorems



Feature distribution at the condensed regime

Blue: 𝑚 = 103

red: 𝑚 = 104

Yellow: 𝑚 = 106



initialization

Training dynamics 
(condense or not)

generalization

Initial DNN 
output

Impact of initialization on generalization



Revisit picture of deep learning (regression)

Parameter space

Global minima

loss  
initialization  
dynamics

linear condensed

Low freq
interpolation





Important problems in this field 

• Error analysis

– Approximation error

– Generalization error

– Training error

• Multiple layers: what is the advantage of multiple layers?

• High-dimensional problems (overcome curse of dimensionality)

• Huge number of parameters: why algorithms can find good solutions in large 

para space? 

𝑓𝑡𝑎𝑟

Hypothesis set ℎ𝐷

ℎ𝑠ℎ

App err

gen err

train err

Credit to the discussion with Prof. Weinan E



More specific problems

• Phase diagram for multiple layer NN

– The mechanism of the condensation

– Implicit bias in different regimes

– Generalization

• Loss landscape: properties of minima

• Implicit bias of network structures

• The characteristics of real data
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